
Elementary Data Structures

Stacks & Queues

Lists, Vectors, Sequences

Amortized Analysis

Trees

Elementary Data Structures

• Linear Data Structures:

➢ Stacks, Queues, Vectors, Lists and Sequences

• Hierarchical Data Structures (non-linear):

➢ Tree

Elementary Data Structures 2

Stack ADT

• Container that stores arbitrary objects

• Insertions and deletions follow last-in first-out (LIFO) scheme

• Main operations

– push(object): insert element

– object pop(): remove and returns last element

• Auxiliary operations

– object top(): returns last element without removing it

– integer size(): returns number of elements stored

– boolean isEmpty(): returns whether no elements are stored

Elementary Data Structures 3

push pop

top of stack

Applications of Stacks

• Direct

– Page visited history in a web browser

– Undo sequence in a text editor

– Chain of method calls in C++ runtime environment

• Indirect

– Auxiliary data structure for algorithms

– Component of other data structures

Elementary Data Structures 4

Array-based Stack

• Add elements from left to right in an array S of capacity N

• A variable t keeps track of the index of the top element

• Size is t+1

Elementary Data Structures 5

S

0 1 2

…

Algorithm pop():

if isEmpty() then

throw EmptyStackException

else

t t − 1

return S[t + 1]

Algorithm push(o):

if t = N-1 then

throw FullStackException

else

t t + 1

S[t] o

O(1) O(1)

t

Amortization

• Amortization: analysis tool to understand running
times of algorithms that have steps with widely
varying performance.

• In an amortized analysis, we average the running
time T(n) required to perform a sequence of data-
structure operations over all the operations
performed, i.e., T(n) / n

• Amortization takes into an account the
interactions between the operations rather than
focusing ton each operations separately.

Elementary Data Structures 7

Amortization

• Let us have another operation in Stack.
– clearStack():Remove all elements of stack.

– The running time of clearStack() is 𝜃(𝑛).

• Consider a series of n operations on empty stack.
– What is the running of clearStack() on these n operations?

– There might be as many as 𝑂(𝑛) clear operations in this series,
so we may say that the running of this series is 𝑂 𝑛2 .

– This is true but an overstatement.

– Since there is an interaction between these operations, the
amortizations analysis can show that the running of the entire
series of n operations is O(n).

– So the average running time of any operation is O(n).

Elementary Data Structures 8

Queue ADT

• Container that stores arbitrary objects

• Insertions and deletions follow first-in first-out (FIFO) scheme

• Main operations

– enqueue(object): insert element at end

– object dequeue(): remove and returns front element

• Auxiliary operations

– object front(): returns front element without removing it

– integer size(): returns number of elements stored

– boolean isEmpty(): returns whether no elements are stored

Elementary Data Structures 16

dequeueenqueue

end front

Applications of Queues

• Direct

– Waiting lines

– Access to shared resources

– Multiprogramming

• Indirect

– Auxiliary data structure for algorithms

– Component of other data structures

Elementary Data Structures 17

Elementary Data Structures 18

Singly Linked List

• A data structure consisting of a sequence of nodes

• Each node stores an element and a link to the next node

Elementary Data Structures 19

next

elem

head

A B C D

tail

Queue with a Singly Linked List

• Singly Linked List implementation

– front is stored at the first node

– end is stored at the last node

• Space used is O(n) and each operation takes O(1) time

Elementary Data Structures 20

A B C D

enqueue

dequeue

front

end

Vectors, Lists and Sequences

• Stacks and queues store elements according to

a linear sequence determined by update

operations that act on the "ends" of the

sequence.

• Vectors, Lists and Sequences maintain linear

orders while allowing for accesses and updates

in the "middle."

Elementary Data Structures 21

Vector ADT
• A linear sequence that supports access to its elements by their rank

(number of elements preceding it).

• Rank is similar to an array index.

– but we do not insist that an array should be used to implement a
sequence in such a way that the element at rank 0 is stored at index 0 in
the array.

• The rank of an element may change whenever the sequence is updated.

• Main operations:

– size() O(1)

– isEmpty() O(1)

– elemAtRank(r) O(1)

– replaceAtRank(r, e) O(1)

– insertAtRank(r, e) O(n)

– removeAtRank(r) O(n)

Elementary Data Structures 22

Array-based Vector

• Use an array V of size N

• A variable n keeps track of the size of the vector (number of
elements stored)

• elemAtRank(r) is implemented in O(1) time by returning V[r]

Elementary Data Structures

V

0 1 2 nr

23

Insertion: insertAtRank(r, o)

• Need to make room for the new element by shifting forward the
n − r elements V[r], …, V[n − 1]

• In the worst case (r = 0), this takes O(n) time

• We could use an extendable array when more space is required

Elementary Data Structures

V

0 1 2 nr

V

0 1 2 n

o

r

0 1 2 nr

V

24

Deletion: removeAtRank(r)

• Need to fill the hole left by the removed element by shifting
backward the n − r − 1 elements V[r + 1], …, V[n − 1]

• In the worst case (r = 0), this takes O(n) time

Elementary Data Structures

V

0 1 2 nr

V

0 1 2 n

o

r

V

0 1 2 nr

25

Elementary Data Structures 26

List ADT

• A collection of objects ordered with respect to their position

(the node storing that element)

– each object knows who comes before and after it

• Allows for insert/remove in the “middle”

Elementary Data Structures 27

• Query operations

– isFirst(p), isLast(p)

• Accessor operations

– first(), last()

– before(p), after(p)

• Update operations

– replaceElement(p, e)

– swapElements(p, q)

– insertBefore(p, e), insertAfter(p, e)

– insertFirst(e), insertLast(e)

– remove(p)

List ADT

Elementary Data Structures 28

List ADT

Elementary Data Structures 29

Doubly Linked List

• Provides a natural implementation of List ADT

• Nodes implement position and store

– element

– link to previous and next node

• Special head and tail nodes

Elementary Data Structures 30

next

elem

prev

tailhead

A B C D

Insertion: insertAfter(p, X)

Elementary Data Structures

A B C

p

A B C

p

q

A B X C

p q

31

X

Deletion: remove(p)

Elementary Data Structures

• We visualize remove(p), where p = last()

A B C D

p

A B C

D

p

A B C

32

Sequence
• A generalized ADT that includes all methods from vector and list ADTs

– plus the following two "bridging" methods that provide connections between ranks and positions:

– atRank(r): Return the position of the element with rank r.

– rankOf(p): Return the rank of the element at position p.

• Provides access to its elements from both rank and position

• Can be implemented with an array or doubly linked list

Elementary Data Structures

Operation Array List

size, isEmpty O(1) O(1)

atRank, rankOf, elemAtRank O(1) O(n)

first, last, before, after O(1) O(1)

replaceElement, swapElements O(1) O(1)

replaceAtRank O(1) O(n)

insertAtRank, removeAtRank O(n) O(n)

insertFirst, insertLast O(1) O(1)

insertAfter, insertBefore O(n) O(1)

remove (at given position) O(n) O(1)

33

Tree

• Stores elements hierarchically

• A tree T is a set of nodes storing

elements in a parent-child relationship

with the following properties:

– T has a special node r , called the

root of T .

– Each node v of T different from r

has a parent node u.

• Direct applications:

– Organizational charts

– File systems

– Programming environments

Elementary Data Structures 34

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

root

external nodes

(leaves)

internal

nodes

Tree

• If node u is the parent of node v, then we say that v is a child of u .

• Two nodes that are children of the same parent are siblings .

• A node is external (leaf) if it has no children, and it is internal if it has one
or more children.

• The ancestors of a vertex are the vertices in the path from the root to this
vertex.

• The descendants of a vertex v are those vertices that have v as an ancestor.

• Depth : The depth of a node is the number of edges from the node to the
tree's root node. In other words, the depth of v is the number of ancestors of
v.

• The height of a tree T is equal to the maximum depth of an external node
of T.

• Height of a node 𝒗 is the number of edges on the longest path from 𝑣 to a
leaf. A leaf node will have a height of 0. The height of a tree is the largest
level of the vertices of a tree which is he height of a root.

Elementary Data Structures 35

Example

• The parent of 𝒅 is 𝒂.

• The children of 𝒄 are 𝒈, 𝒉, and 𝑖 .

• The siblings of 𝒈 are 𝒉 and 𝒊.
• The ancestors of 𝒇 are 𝒅, 𝒂, and 𝒓.

• The descendants of 𝒂 are 𝒅, 𝒆, and 𝒇.

• The internal vertices are 𝒓, 𝒂, 𝒅, 𝒄, 𝒈, and 𝒊 .

• The leaves are 𝒆, 𝒇, 𝒃, 𝒋, 𝒉, 𝒌, and 𝒍.
• The height of 𝒅 is 1.

• The height of 𝒄 is 2.

• The height of 𝒃 is 0.

• The height of 𝒓 is 3 which is the height of tree.

• The depth of d is 2.

• The depth of 𝒓 is 0.

• The depth of 𝒌 is 3.

• The height of Tree is 3.

Tree ADT

• Accessor methods :

– root() : Return the root of the tree. O(1)

– parent(v) : Return the parent of node v; an error occurs if v is root. O(1)

– children(v) : Return the children of node v. O(𝑐𝑣)

• Query methods (All takes O(1)):

– isInternaI(v) : Test whether node v is internal.

– isExternal(v) : Test whether node v is external.

– isRoot(v) : Test whether node v is the root.

Elementary Data Structures 38

Tree ADT

• Generic methods:

– size() : Return the number of nodes in the tree. O(1)

– elements() : Return an iterator of all the elements stored at nodes of the

tree. O(n)

– positions() : Return an iterator of all the nodes of the tree. O(n)

– swapElements(v, w): Swap the elements stored at the nodes v and w. O(1)

– replaceElement (v, e) : Replace with e and return the element stored at

node v. O(1)

Elementary Data Structures 39

Depth of Tree

• Find the depth of a node v:

Algorithm depth(T, v):

if T. isRoot(v) then

return 0

else

return 1 + depth (T, T. parent(v))

• The running time of algorithm depth(T, v) is 𝑂(1 +
𝑑𝑣), where 𝑑𝑣 denotes the depth of the node v in the
tree T.

• Run time is O(n) in the worst-case.

Elementary Data Structures 40

Tree Traversal

A traversal visits the nodes of a tree in a systematic manner.

• preorder: a node is visited before its descendants

preOrder(A) visits ABEFCGHID

• postorder: a node is visited after its descendants

postOrder(A) visits EFBGHICDA

Elementary Data Structures 42

A

B C D

E F G H I

Algorithm preOrder(v)

visit(v)

for each child w of v

preOrder (w)

Algorithm postOrder(v)

for each child w of v

postOrder (w)

visit(v)

O(n)

O(n)

Binary Trees

• A binary tree is an ordered tree with the

following properties:

– Each internal node has two children

– The children of a node are an ordered pair
(left child, right child)

• Recursive definition: a binary tree is

– A single node is a binary tree

– Two binary trees connected by a root is a binary tree

• Applications:

– arithmetic expressions

– decision processes

– searching
Elementary Data Structures 43

A

B C

F GD E

H I

Arithmetic Expression Tree

• Binary tree associated with an arithmetic expression

– internal nodes: operators

– external nodes: operands

• Ex: arithmetic expression tree for expression (2 (a − 1) + (3 b))

Elementary Data Structures 44

+

−2

a 1

3 b

Decision Tree

• Binary tree associated with a decision process

– internal nodes: questions with yes/no answer

– external nodes: decisions

• Ex: dining decision

Elementary Data Structures 45

Want a fast meal?

How about coffee? On expense account?

Tree City Pizza Fire Taco Tantos Ray’s

Yes No

Yes No Yes No

Binary Tree ADT

• Additional accessor methods:

– leftChild(v): Return the left child of v; an error

condition occurs if v is an external node.

– rightChild(v): Return the right child of v; an error

condition occurs if v is an external node.

– sibling(v): Return the sibling of node v; an error

condition occurs if v is the root.

Elementary Data Structures 46

Full Binary Tree

Elementary Data Structures 47

A full binary tree is a tree in which every node other than the

leaves has two children.

Complete Binary Tree

• A complete binary tree is a binary tree in

which every level, except possibly the last, is

completely filled, and all nodes are as far left

as possible.

Elementary Data Structures 48

Number of nodes at Levels

Elementary Data Structures 50

• Level 𝑙 has at most 2𝑙 nodes

• The number of external nodes in

T is at least h + 1 and at most 2ℎ

.

Mathematical Review

• Geometric Summation:

1 + 2 + 4 + 8 + 16 +⋯+2𝑛−1= 2𝑛 − 1

20 + 21 ++22 +⋯2𝑛−1 = 2𝑛 − 1

• Another important Summation:

𝑖=1

𝑛

𝑖 = 1 + 2 + 3 +⋯+ 𝑛 − 1 + 𝑛 − 1 + 𝑛

=
𝑛(𝑛+1)

2

Elementary Data Structures 51

Total Number of Nodes in Tree

• The total number of nodes in T is :

20 + 21 ++22 +⋯2ℎ = 2ℎ+ 1 − 1.

Elementary Data Structures 52

Height of Tree

• The height of tree is:

𝑛 = 2ℎ+1 − 1

So,

ℎ = log2(𝑛 + 1) − 1

Elementary Data Structures 53

Inorder Traversal of a Binary Tree

• inorder traversal: visit a node after its left subtree and before

its right subtree

Elementary Data Structures 54

A

B C

F GD E

H I

Algorithm inOrder(v)

if isInternal (v)

inOrder (leftChild (v))

visit(v)

if isInternal (v)

inOrder (rightChild (v))

Ex: DBHEIAFCG

O(n)

Printing Arithmetic Expressions

• Specialization of an inorder traversal

– print operand/operator when visiting node

– print “(“ before visiting left

– print “)” before visiting right

Elementary Data Structures 55

Algorithm printExpression(v)

if isInternal (v)
print(“(‘’)

inOrder (leftChild (v))

print(v.element ())

if isInternal (v)

inOrder (rightChild (v))

print (“)’’)

+

−2

a 1

3 b

((2 (a − 1)) + (3 b))

O(n)

Linked Data Structure for

Representing Trees
A node stores:

• element

• parent node

• sequence of children nodes

Elementary Data Structures 57

B

A D F

C

E

B

DA

C E

F

Linked Data Structure for

Binary Trees
A node stores:

• element

• parent node

• left node

• right node

Elementary Data Structures 58

B

A D

C E

B

DA

C E

Array-Based Representation of

Binary Trees
Nodes are stored in an array

• rank(root) = 1

• If rank(node) = i, then

rank(leftChild) = 2*i

rank(rightChild) = 2*i + 1

Elementary Data Structures 59

B

DA

C E

1

2

3

6 7

EAB CD

rank: 1 2 3 4 5 6 7

Ex: ‘E’ is right child of D

rank(E) = 2 * rank(D) + 1

= 2 * 3 + 1

= 7

Ex: ‘A’ is left child of B

rank(A) = 2 * rank(B)

= 2 * 1 = 1

Running Times of BT Operations

Elementary Data Structures 60

