Elementary Data Structures

Stacks \& Queues
Lists, Vectors, Sequences
Amortized Analysis
Trees

Elementary Data Structures

- Linear Data Structures:
$>$ Stacks, Queues, Vectors, Lists and Sequences
- Hierarchical Data Structures (non-linear):
$>$ Tree

Non -Linear Data Structure

Stack ADT

- Container that stores arbitrary objects
- Insertions and deletions follow last-in first-out (LIFO) scheme
- Main operations
- push(object): insert element
- object pop(): remove and returns last element
- Auxiliary operations
- object top(): returns last element without removing it
- integer size(): returns number of elements stored
- boolean isEmpty(): returns whether no elements are stored

Applications of Stacks

- Direct
- Page visited history in a web browser
- Undo sequence in a text editor
- Chain of method calls in $\mathrm{C}++$ runtime environment
- Indirect
- Auxiliary data structure for algorithms
- Component of other data structures

Array-based Stack

- Add elements from left to right in an array S of capacity N
- A variable t keeps track of the index of the top element
- Size is $t+1$

Algorithm push(o):
if $t=N-1$ then
throw FullStackException else
$t \leftarrow t+1$
$S[t] \leftarrow o$
$O(1)$
S

Amortization

- Amortization: analysis tool to understand running times of algorithms that have steps with widely varying performance.
- In an amortized analysis, we average the running time $\mathrm{T}(\mathrm{n})$ required to perform a sequence of datastructure operations over all the operations performed, i.e., $\boldsymbol{T}(\boldsymbol{n}) / \boldsymbol{n}$
- Amortization takes into an account the interactions between the operations rather than focusing ton each operations separately.

Amortization

- Let us have another operation in Stack.
- clearStack():Remove all elements of stack.
- The running time of clearStack() is $\theta(n)$.
- Consider a series of n operations on empty stack.
- What is the running of clearStack() on these n operations?
- There might be as many as $O(n)$ clear operations in this series, so we may say that the running of this series is $O\left(n^{2}\right)$.
- This is true but an overstatement.
- Since there is an interaction between these operations, the amortizations analysis can show that the running of the entire series of n operations is $\mathrm{O}(\mathrm{n})$.
- So the average running time of any operation is $\mathrm{O}(\mathrm{n})$.

Queue ADT enqueue $\Rightarrow \square \underset{\text { end }}{\square} \square \square \underset{\text { front }}{\square} \Rightarrow$ dequeue

- Container that stores arbitrary objects
- Insertions and deletions follow first-in first-out (FIFO) scheme
- Main operations
- enqueue(object): insert element at end
- object dequeue(): remove and returns front element
- Auxiliary operations
- object front(): returns front element without removing it
- integer size(): returns number of elements stored
- boolean isEmpty(): returns whether no elements are stored

Applications of Queues

- Direct
- Waiting lines
- Access to shared resources
- Multiprogramming
- Indirect
- Auxiliary data structure for algorithms
- Component of other data structures

Algorithm dequeue(): if isEmpty() then
throw a QueueEmptyException
tem $p \leftarrow Q[f]$
$Q[f] \leftarrow$ null
$f \leftarrow(f+1) \bmod N$
return temp
Algorithm enqueue (o) :
if size ()$=N-1$ then
throw a QueueFullException
$Q[r] \leftarrow o$
$r \leftarrow(r+1) \bmod N$

Singly Linked List

- A data structure consisting of a sequence of nodes

- Each node stores an element and a link to the next node

Queue with a Singly Linked List

- Singly Linked List implementation
- front is stored at the first node
- end is stored at the last node
- Space used is $\boldsymbol{O}(\boldsymbol{n})$ and each operation takes $\boldsymbol{O}(1)$ time

Vectors, Lists and Sequences

- Stacks and queues store elements according to a linear sequence determined by update operations that act on the "ends" of the sequence.
- Vectors, Lists and Sequences maintain linear orders while allowing for accesses and updates in the "middle."

Vector ADT

- A linear sequence that supports access to its elements by their rank (number of elements preceding it).
- Rank is similar to an array index.
- but we do not insist that an array should be used to implement a sequence in such a way that the element at rank 0 is stored at index 0 in the array.
- The rank of an element may change whenever the sequence is updated.
- Main operations:
- size()
- isEmpty()
- elemAtRank(r)
- replaceAtRank(r, e) O(1)
- insertAtRank(r, e) O(n)
- removeAtRank(r) O(n)

Array-based Vector

- Use an array V of $\operatorname{size} N$
- A variable \boldsymbol{n} keeps track of the size of the vector (number of elements stored)
- elemAtRank(r) is implemented in $\boldsymbol{O}(1)$ time by returning $\boldsymbol{V}[\boldsymbol{r}]$

Insertion: insertAtRank(r, o)

- Need to make room for the new element by shifting forward the $\boldsymbol{n}-\boldsymbol{r}$ elements $\boldsymbol{V}[\boldsymbol{r}], \ldots, \boldsymbol{V}[\boldsymbol{n}-1]$
- In the worst case $(\boldsymbol{r}=0)$, this takes $\boldsymbol{O}(\boldsymbol{n})$ time

- We could use an extendable array when more space is required

Deletion: removeAtRank(r)

- Need to fill the hole left by the removed element by shifting backward the $\boldsymbol{n}-\boldsymbol{r}-1$ elements $\boldsymbol{V}[\boldsymbol{r}+1], \ldots, \boldsymbol{V}[\boldsymbol{n}-1]$
- In the worst case $(\boldsymbol{r}=0)$, this takes $\boldsymbol{O}(\boldsymbol{n})$ time

Algorithm insertAtRank($r, e)$:

$$
\begin{aligned}
& \text { for } i=n-1, n-2, \ldots, r \text { do } \\
& \quad A[i+1] \leftarrow A[i] \quad \text { \{make room for the new element }\} \\
& A[r] \leftarrow e \\
& n \leftarrow n+1
\end{aligned}
$$

Algorithm removeAtRank (r) :

$$
\begin{aligned}
& e \leftarrow-A[r] \quad\{e \text { is a temporary variable }\} \\
& \text { for } i=r r r+1, \ldots, n-2 \text { do } \\
& \quad A[i] \leftarrow A[i+1] \quad\{\text { fill in for the removed element }\} \\
& n \leftarrow n-1 \\
& \text { return } e
\end{aligned}
$$

Algorithm 2.6: Methods in an array implementation of the vector ADT.

List ADT

- A collection of objects ordered with respect to their position (the node storing that element)
- each object knows who comes before and after it
- Allows for insert/remove in the "middle"
- Query operations
- isFirst(p), isLast(p)
- Accessor operations
- first(), last()
- before(p), after(p)
- Update operations
- replaceElement(p, e)
- swapElements(p, q)
- insertBefore(p, e), insertAfter(p, e)
- insertFirst(e), insertLast(e)
- remove(p)

List ADT

first(): Return the position of the first element of S; an error occurs if S is empty.
last(): Return the position of the last element of S; an error occurs if S is empty.
isFirst (p) : Return a Boolean value indicating whether the given position is the first one in the list.
isLast (p) : Return a Boolean value indicating whether the given position is the last one in the list.
before (p) : Return the position of the element of S preceding the one at position p, an error occurs if p is the first position.
$\operatorname{after}(p)$: Return the position of the element of S following the one at position p, an error occurs if p is the last position.

List ADT

replaceElement (p, e) : Replace the element at position p with e, returning the element formerly at position p.
swapElements (p, q) : Swap the elements stored at positions p and q, so that the element that is at position p moves to position q and the element that is at position q moves to position p.
insertFirst (e) : Insert a new element e into S as the first element.
insertLast (e) : Insert a new element e into S as the last element.
insertBefore (p, e) : Insert a new element e into S before position p in S; an error occurs if p is the first position.
insertAfter (p, e) : Insert a new element e into S after position p in S; an error occurs if p is the last position.
remove (p) : Remove from S the element at position p.

Doubly Linked List

- Provides a natural implementation of List ADT
- Nodes implement position and store
- element
- link to previous and next node

- Special head and tail nodes

Insertion: insertAfter (p, X)

Deletion: remove(p)

- We visualize remove(p), where $\mathrm{p}=$ last()

Sequence

- A generalized ADT that includes all methods from vector and list ADTs
- plus the following two "bridging" methods that provide connections between ranks and positions:
- atRank(r): Return the position of the element with rank r.
- $\quad \operatorname{rankOf}(\mathrm{p}):$ Return the rank of the element at position p .
- Provides access to its elements from both rank and position
- Can be implemented with an array or doubly linked list

Operation	Array	List
size, isEmpty	$O(1)$	$O(1)$
atRank, rankOf, elemAtRank	$\boldsymbol{O}(\mathbf{1})$	$O(n)$
first, last, before, after	$O(1)$	$O(1)$
replaceElement, swapElements	$O(1)$	$O(1)$
replaceAtRank	$\boldsymbol{O}(\mathbf{1})$	$O(n)$
insertAtRank, removeAtRank	$O(n)$	$O(n)$
insertFirst, insertLast	$O(1)$	$O(1)$
insertAfter, insertBefore	$O(n)$	$\boldsymbol{O}(\mathbf{1})$
remove (at given position)	$O(n)$	$\boldsymbol{O}(\mathbf{1})$

Tree

- Stores elements hierarchically
- A tree T is a set of nodes storing elements in a parent-child relationship with the following properties:
- T has a special node r , called the root of T.
- Each node v of T different from r has a parent node u.
- Direct applications:
- Organizational charts
- File systems
- Programming environments

Tree

- If node u is the parent of node v, then we say that v is a child of u.
- Two nodes that are children of the same parent are siblings .
- A node is external (leaf) if it has no children, and it is internal if it has one or more children.
- The ancestors of a vertex are the vertices in the path from the root to this vertex.
- The descendants of a vertex v are those vertices that have v as an ancestor.
- Depth : The depth of a node is the number of edges from the node to the tree's root node. In other words, the depth of v is the number of ancestors of v.
- The height of a tree T is equal to the maximum depth of an external node of T.
- Height of a node v is the number of edges on the longest path from v to a leaf. A leaf node will have a height of 0 . The height of a tree is the largest level of the vertices of a tree which is he height of a root.

Example

- The parent of d is a.
- The children of c are g, h, and i.
- The siblings of g are h and i.
- The ancestors of f are d, a, and r.
- The descendants of a are d, e, and f.
- The internal vertices are r, a, d, c, g, and i.
- The leaves are e, f, b, j, h, k, and l.
- The height of d is 1 .
- The height of c is 2 .
- The height of b is 0 .
- The height of r is 3 which is the height of tree.
- The depth of d is 2 .
- The depth of r is 0 .
- The depth of k is 3 .
- The height of Tree is 3 .

Tree ADT

- Accessor methods :
$-\operatorname{root}():$ Return the root of the tree. $\mathrm{O}(1)$
- parent(v) : Return the parent of node v ; an error occurs if v is root. $\mathrm{O}(1)$
- children(v) : Return the children of node v. $\mathrm{O}\left(c_{v}\right)$
- Query methods (All takes O(1)):
- isInternaI(v) : Test whether node v is internal.
- isExternal(v) : Test whether node v is external.
- isRoot(v): Test whether node v is the root.

Tree ADT

- Generic methods:
- size() : Return the number of nodes in the tree. O(1)
- elements() : Return an iterator of all the elements stored at nodes of the tree. O(n)
- positions() : Return an iterator of all the nodes of the tree. O(n)
- swapElements(v, w): Swap the elements stored at the nodes vand w. O(1)
- replaceElement (v, e): Replace with e and return the element stored at node v. O(1)

Depth of Tree

- Find the depth of a node v :

```
Algorithm depth(T, v):
    if T. isRoot(v) then
    return 0
        else
        return 1 + depth (T, T. parent(v))
```

- The running time of algorithm depth($\mathrm{T}, \mathrm{v})$ is $O(1+$ d_{v}), where d_{v} denotes the depth of the node v in the tree T .
- Run time is $\mathrm{O}(\mathrm{n})$ in the worst-case.

Tree Traversal

A traversal visits the nodes of a tree in a systematic manner.

- preorder: a node is visited before its descendants
$O(n)$ Algorithm preOrder(v)
visit (v)
for each child \boldsymbol{w} of \boldsymbol{v} preOrder (w)
preOrder(A) visits ABEFCGHID
- postorder: a node is visited after its descendants
$O(n)$ Algorithm postOrder(v) for each child \boldsymbol{w} of \boldsymbol{v} postOrder(A) visits EFBGHICDA
postOrder (w)
visit (v)

Binary Trees

- A binary tree is an ordered tree with the following properties:
- Each internal node has two children
- The children of a node are an ordered pair (left child, right child)

- Recursive definition: a binary tree is
- A single node is a binary tree
- Two binary trees connected by a root is a binary tree
- Applications:
- arithmetic expressions
- decision processes
- searching

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
- internal nodes: operators
- external nodes: operands
- Ex: arithmetic expression tree for expression $(2 \times(a-1)+(3 \times b))$

Decision Tree

- Binary tree associated with a decision process
- internal nodes: questions with yes/no answer
- external nodes: decisions
- Ex: dining decision

Binary Tree ADT

- Additional accessor methods:
- leftChild(v): Return the left child of v; an error condition occurs if v is an external node.
- rightChild(v): Return the right child of v ; an error condition occurs if v is an external node.
- sibling(v): Return the sibling of node v ; an error condition occurs if v is the root.

Full Binary Tree

A full binary tree is a tree in which every node other than the leaves has two children.

Complete Binary Tree

- A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.

Not a Complete
Binary Tree

Number of nodes at Levels

- Level l has at most 2^{l} nodes

Level Nodes

- The number of external nodes in T is at least $\mathrm{h}+1$ and at most 2^{h}

Figure 2.25: Maximum number of nodes in the levels of a binary tree.

Mathematical Review

- Geometric Summation:

$$
\begin{aligned}
& 1+2+4+8+16+\cdots+2^{n-1}=2^{n}-1 \\
& 2^{0}+2^{1}++2^{2}+\cdots 2^{n-1}=2^{n}-1
\end{aligned}
$$

- Another important Summation:

$$
\begin{aligned}
\sum_{i=1}^{n} i & =1+2+3+\cdots+(n-1)+(n-1)+n \\
& =\frac{n(n+1)}{2}
\end{aligned}
$$

Total Number of Nodes in Tree

- The total number of nodes in T is :

$$
2^{0}+2^{1}++2^{2}+\cdots 2^{h}=2^{h+1}-1
$$

Height of Tree

- The height of tree is:

$$
\begin{aligned}
& n=2^{h+1}-1 \\
& \text { So, } \\
& h=\log _{2}(n+1)-1
\end{aligned}
$$

Inorder Traversal of a Binary Tree

- inorder traversal: visit a node after its left subtree and before its right subtree

$\boldsymbol{O}(n)$| Algorithm inOrder (v) |
| :---: |
| if isInternal (v) |
| inOrder (leftChild (v)) |
| visit(v) |
| if isInternal (v) |
| inOrder (rightChild $(v))$ |

Printing Arithmetic Expressions

- Specialization of an inorder traversal
- print operand/operator when visiting node
- print "(" before visiting left
- print ")" before visiting right


```
Algorithm printExpression(v)
    if isInternal (v)
        print("(")
        inOrder (leftChild (v))
    print(v.element ())
    if isInternal (v)
        inOrder (rightChild (v))
        print (")")
```

 \(((2 \times(a-1))+(3 \times b))\)

Linked Data Structure for Representing Trees

A node stores:

- element
- parent node
- sequence of children nodes

Linked Data Structure for Binary Trees

A node stores:

- element
- parent node
- left node
- right node

Array-Based Representation of Binary Trees

Nodes are stored in an array

- $\operatorname{rank}(\operatorname{root})=1$
- If $\operatorname{rank}($ node $)=i$, then $\operatorname{rank}($ leftChild $)=2 * i$ $\operatorname{rank}($ rightChild $)=2 * i+1$

Ex: ' A ' is left child of B

$$
\begin{aligned}
\operatorname{rank}(\mathrm{A}) & =2 * \operatorname{rank}(\mathrm{~B}) \\
& =2 * 1=1
\end{aligned}
$$

Ex: ' E ' is right child of D

$$
\begin{aligned}
\operatorname{rank}(\mathrm{E}) & =2 * \operatorname{rank}(\mathrm{D})+1 \\
& =2 * 3+1 \\
& =7
\end{aligned}
$$

Running Times of BT Operations

Table 2.36 summarizes the running times of the methods of a binary tree implemented with a vector. In this table, we do not include any methods for updating a binary tree.

Operation	Time
positions, elements	$O(n)$
swapElements, replaceElement	$O(1)$
root, parent, children	$O(1)$
leftChild, rightChild, sibling	$O(1)$
isInternal, isExternal, isRoot	$O(1)$

